Integrated Schematic Design Method for Shear Wall Structures: A Practical Application of Generative Adversarial Networks

نویسندگان

چکیده

The intelligent design method based on generative adversarial networks (GANs) represents an emerging structural paradigm where rules are not artificially defined but directly learned from existing data. GAN-based methods have exhibited promising potential compared to conventional in the schematic phase of reinforced concrete (RC) shear wall structures. However, for following reasons, it is challenging apply approaches industry and integrate them into process. (1) data form heterogeneous that widely used computer-aided (CAD) methods, (2) high requirements hardware software environment user’s computer. As a result, this study proposes integrated RC structures, providing workable GAN application strategy. Specifically, preprocessing architectural CAD drawings proposed connect with upstream design; user-friendly cloud platform built reduce local computer environment; (3) transformation parametric modeling procedure automatically establish analysis model GAN’s design, facilitating downstream detailed tasks. makes possible entire structures be automated. A case reveals has accuracy 97.3% capable generating layout designs similar competent engineer, 225 times higher efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Geometry Score: A Method For Comparing Generative Adversarial Networks

One of the biggest challenges in the research of generative adversarial networks (GANs) is assessing the quality of generated samples and detecting various levels of mode collapse. In this work, we construct a novel measure of performance of a GAN by comparing geometrical properties of the underlying data manifold and the generated one, which provides both qualitative and quantitative means for...

متن کامل

Evolutionary Generative Adversarial Networks

Generative adversarial networks (GAN) have been effective for learning generative models for real-world data. However, existing GANs (GAN and its variants) tend to suffer from training problems such as instability and mode collapse. In this paper, we propose a novel GAN framework called evolutionary generative adversarial networks (E-GAN) for stable GAN training and improved generative performa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Buildings

سال: 2022

ISSN: ['2075-5309']

DOI: https://doi.org/10.3390/buildings12091295